ASSIGNMENT SET - I

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

B.Sc Hon.(CBCS)

Mathematics: Semester-I

Paper Code: C2T

[Algebra]

Answer all the questions

Unit-1

- 1) If x + iy moves on the straight line 3x + 4y + 5 = 0, then find the minimum value of |x + iy|.
- 2) If $(1 + i \tan \alpha)^{1 + i \tan \beta}$ can have real value, then show that one of them is $(\sec \alpha)^{\sec^2 \beta}$.
- 3) If the complex numbers z_1 , z_2 and z_3 represent the three points P, Q, R and be such that $lz_1 + mz_2 + nz_3 = 0$ where +m + n = 0, then show that the points P, Q, R lie on a straight line.
- 4) Apply Descartes' rule if signs to ascertain the minimum of complex roots of the equation $x^6 + 3x^2 2x 3 = 0$.
- 5) Find the sum of 99th powers of the roots of the equation $x^7 1 = 0$.
- 6) z is a variable complex number such that |z| = 2. Show that the point $z + \frac{1}{z}$ lies on an ellipse.
- 7) If $= log \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$, where θ is real, prove that $\theta = ilog \tan\left(\frac{\pi}{4} + i\frac{x}{2}\right)$.
- 8) Show that the condition that the sum of two roots of the equation $x^4 + mx^2 + mx + p = 0$ be equal to the product of the other two roots is $(2p n)^2 = (p n)(p + m n)^2$.
- 9) If $a_1, a_2, ..., a_n$ be *n* real positive quantities then prove that $A.M. \ge G.M. \ge H.M$.
- 10) Solve the equation $x^3 3x^2 33x + 847 = 0$ by Cardan's method.
- 11) State and prove Cauchy Schwarz's inequality.

12) Show that the equation

 $\begin{aligned} & (x-a)^3 + (x-b)^3 + (x-c)^3 + (x-d)^3 = 0\\ & \text{Where } a, b, c, d \text{ are not all equal, has only one real root.} \end{aligned}$ $\begin{aligned} & 13) \text{ If } s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \text{ prove that}\\ & (i) \quad s_n > \frac{2n}{n+1}, \text{ if } n > 2.\\ & (ii) \quad \left(\frac{n-s_n}{n-1}\right)^{n-1} > \frac{1}{n}, \text{ if } n > 2. \end{aligned}$

14) If
$$x + \frac{1}{x} = 2\cos\alpha$$
, $y + \frac{1}{y} = 2\cos\beta$, $z + \frac{1}{z} = 2\cos\gamma$, and $x + y + z = 0$ then prove that
 $\sum \sin 4\alpha = 2\sum \sin(\beta + \gamma)$
And $\sum \cos 4\alpha = 2\sum \cos(\beta + \gamma)$.

15) If *a*, *b*, *c*, *x*, *y*, *z* be all real numbers and $a^2 + b^2 + c^2 = 1$, $x^2 + y^2 + z^2 = 1$ then prove that $-1 \le ax + by + cz \le 1$.

If $a_1, a_2, \dots a_n$ be n positive rational numbers and $s = a_1 + a_2 + \dots + a_m$ prove that $\left(\frac{s}{a_1} - 1\right)^{a_1} \left(\frac{s}{a_2} - 1\right)^{a_2} \dots \left(\frac{s}{a_n} - 1\right)^{a_n} \le (n-1)^s$.

16) Show that the solution of the equation $(1 + x)^n - (1 - x)^n = 0$ are $x = i \tan \frac{\pi r}{n}$,

Where r = 0, 1, 2, ..., n - 1, if n be odd = $o, 1, 2, ..., \frac{n}{2} - 1, \frac{n}{2} + 1, ..., n - 1$, if n be even.

- 17) Solve the equation $x^4 12x^3 + 47x^2 72x + 36 = 0$ Given that the product of two of the roots is equal to the product of the other two.
- 18) Prove that the minimum value of $x^2 + y^2 + z^2$ is $\left(\frac{e}{7}\right)^2$ where x, y, z are positive real numbers subject to the condition 2x + 3y + 6z = c, c being a constant. Find the values of x, y, z for which the minimum value is attained.
- 19) Solve the equation $3x^3 26x^2 + 52x 24 = 0$ given that the roots are in geometric progression.
- 20) If the equation $x^3 + px^2 + qx + r = 0$ has a root $\alpha + i\alpha$ where p, q, r and α are real, prove that $(p^2 2q)(q^2 2pr) = r^2$.

Hence solve the equation $x^3 - x^2 - 4x + 24 = 0$.

21) State Descartes' rule of signs, Obtain the equation whose roots exceed the roots of the equation $x^4 + 3x^2 + 8x + 3 = 0$ by 1.

Use Descartes' rule of signs to both the equations to find the exact number of real and complex roots of the given equation.

- 22) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then form the equation whose roots are $\alpha + \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$, $\gamma + \frac{1}{\gamma}$.
- 23) Solve the equation $x^4 + 12x 5 = 0$ by Ferrari's method.

Unit-2

- 24) If $f : A \to B$ amd $g : B \to C$ be two mapping such that $g \circ f : A \to C$ is surjective, then show that g is surjective.
- 25) Use the 2nd principle of Induction to prove that $(3 + \sqrt{7})^n + (3 \sqrt{7})^n$ is an even integer for all $n \in \mathbb{N}$.
- 26) Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = x^2, x \in \mathbb{R}$. and suppose $P = \{x \in \mathbb{R} : 0 \le x \le 4\}$. Find $f^{-1}[f(p)]$. Is $f^{-1}[f(p)]$ equal to p.
- 27) Find $f \circ g$, if $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = |x| + x, $x \in \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ is defined by g(x) = |x| x, $x \in \mathbb{R}$.
- 28) Let $f : A \to B$ and $P \subseteq A$. Then prove that $P \subseteq f^{-1}f(P)$.
- 29) Find the integer u and v satisfying 52u 91v = 78.
- 30) Using the principle of induction, prove that $2.7^n + 3.5^n 5$ is divisible by 24 for $n \in \mathbb{N}$.
- 31) Find the remainder when $1! + 2! + 3! + \dots + 50!$ is divided by 15.
- 32) Prove that intersection of two equivalence relation is also an equivalence relation.
- 33) Examine if the relation ρ on the set \mathbb{Z} is an equivalence relation or not

 $\rho = \{(a,b)\in\mathbb{Z}\times\mathbb{Z}: |a-b| \le 3\}.$

- 34) Prove that, there exists no integer in between 0 and 1.
- 35) Let $P = \{n \in \mathbb{Z} : 0 \le n \le 5\}$, $Q = \{n \in \mathbb{Z} : -5 \le n \le o\}$ be two sets. Prove that cardinality of two sets are equal.
- 36) Find the units digit in 799.

- 37) Use division algorithm to prove that the square of an odd integer is of the form (8k + 1), where k is an integer.
- 38) Define equivalence relation. A relation ρ is defined on $\mathbb{N} \times \mathbb{N}$ by " $(a, b)\rho(c, d)$ if and only if ad bc" for $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$. Show that ρ is an equivalence relation.
- 39) If X and Y are two non-empty sets and $f : X \to Y$ be an onto mapping, then for any subsets A and B of Y, prove that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(b)$.
- 40) Prove that $1^n 3^n 6^n + 8^n$ is divisible by $10 \forall n \in \mathbb{N}$.
- 41) Find integers u and v satisfying 20u + 63v = 1.
- 42) State the division algorithm on the set of integers.
- 43) Find integers *s* and *t* such that
- gcd(341, 1643) = 341s + 1643t.
- 44) Using the theory of congruence for finding the remainder when the sum $1^5 + 2^5 + 3^5 + \dots + 100^5$ is divided by 5.

- 45) Find the remainder when 777⁷⁷⁷ is divided by 16.
- 46) If k be a + ve integer, show that gcd(ka, kb) = k gcd(a, b).
- 47) Prove that tree is a one-to-one correspondence between the sets (0,1) and [0, 1].
- 48) Use the theory of congruences to prove that $17|2^{3n+1} + 3.5^{2n+1}, \forall n \ge 1|$.
- 49) Let $S = \{x \in \mathbb{R} : -1 < x < 1\}$ and $f : \mathbb{R} \to S$ be defined by $f(x) = \frac{x}{1+|x|}, x \in \mathbb{R}$. Show that f is a bijection and find f^{-1} .

Unit-3

50) Solve the system of equations:

x + 2y - z - 3w = 1 2x + 4y + 3z + w = 3 3x + 6y + 4z - 2w = 5If possible.

51) For what values of k the system of equations

x + 2y + 3z = kx2x + y + 3z = ky2x + 3y + z = kz

Has a non trivial solution.

- 52) Obtain the fully row reduced normal form of the matrix: $\begin{pmatrix} 0 & 0 & 1 & 2 & 1 \\ 1 & 3 & 1 & 0 & 3 \\ 2 & 6 & 4 & 2 & 8 \\ 3 & 9 & 4 & 2 & 10 \end{pmatrix}$.
- x 4y + 5z = k, x y + 2z = 3, 2x + y + z = 053) For what values of k, the planes intersect in a line.
- 54) Find a row echelon matrix which is row equivalent to $\begin{pmatrix} 0 & 0 & 2 & 2 & 0 \\ 1 & 3 & 2 & 4 & 1 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6 \end{pmatrix}$.
- 55) Show that the planes 2x y + z = 5, x + 2y + 4z = 7, 5x + 3y z = 0 are concurrent.
- 56) Let x, y, z be elements of a vector space V over F and. Let $a, b \in F$. Show that x, y, z are linearly dependent, if (x + ay + bz), y, z be linearly dependent.
- 57) Find the condition on $a, b \in \mathbb{R}$ so that the set $\{(a, b, 1), (b, 1, a), (1, a, b)\}$ is linearly dependent in **ℝ**³.

58) Find all real λ for which the rank of matrix A is 2:

$$A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 5 & 3 & \lambda \\ 1 & 1 & 6 & \lambda - 1 \end{pmatrix}$$

59) Solve the system of equations

$$x_2 + x_3 = a$$
$$x_1 + x_3 = b$$

 $x_1 + x_2 = c$ and use the solution to find the inverse of the matrix $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

60) Investigate, for what values of α and μ , the following equations

x + y + z = 6x + 2y + 3z = 10 $x + 2y + \lambda z = \mu$ have i) No solution

- ii) a unique solution
- and iii) an infinite number of solutions.

Unit-4

61) Find the rank of the matrix: $\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$

If two straight lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_ay + c_2 = 0$ are coincident.

- 62) Show that the rank of a skew symmetric matrix cannot be 1.
- 63) Stay Cayley-Hamilton theorem and using theorem find A^{-1} , where $A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}$.
- 64) *A* and *B* are any two 2×2 matrix and *E* is the corresponding unit matrix. Show that AB BA = E cannot hold under any circumstance.
- 65) If λ be an eigen value of a non-singular matrix A then prove that λ^{-1} is an eigen value of A^{-1} .
- 66) A linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(x_1, x_2, x_3) = (3x_1 2x_2 + x_3, x_1 3x_2 2x_3). (x_1, x_2, x_3) \in \mathbb{R}^3$. Find the matrix of T relative to the ordered bases {(0, 1, 1), (1,0,1), (1,1,0)} of \mathbb{R}^3 and {(1,0), (0,1)} of \mathbb{R}^2 .
- 67) Define an eigen vector of a matrix $A_{n \times n}$ over filed F. Show that there exist many eigen vectors of A corresponding to an eigen value $\lambda \in F$.

- 68) Show that the intersection of two subspaces of a vector space over a filed F is a subspace of V.
- 69) If A be a real skew symmetric matrix of order n, prove that :
 - (i) The matrix $S I_n$ is non-singular,

(ii) The matrix $(S - I_n)^{-1}(S + I_n)$ is orthogonal,

(iii) If X be an eigen vector of S with eigen value λ , then X is also an eigen vector of $(S - I_n)^{-1}(S + I_n)$ with eigen value $\frac{\lambda+1}{\lambda-1}$.

70) Let $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$

Prove that *S* is a subspace of \mathbb{R}^3 . Find a basis of *S*. Determine the dimension of *S*.

71) Let $S = \{(x, y, z, w) \in \mathbb{R}^3 : x + 2y - z = 0, 2x + y + w = 0\}$ prove that S is a subspace of the real vector space \mathbb{R}^4 . Also find the basis of S and the dimension of S.

72) *A* is a 3 × 3 real matrix having the eigen values 2, 3, 1. If $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ are the eigen vectors of

A corresponding to the eigen values 2, 3, 1 respectively. Find the matrix A.

73) Let *V* be a vector space over a field *F* and let α , $\beta \in v$. Then prove that the set $w = \{c\alpha + d\beta : c\in F, d\in F\}$ form a subspace of *V*. If $\alpha = (1, 2, 3), \beta = (3, 1, 0)$ and $\gamma = (2, 1, 3)$ then examine for $\gamma \in w$ or not.