ASSIGNMENT SET - I

Department of Mathematics

 Mugberia Gangadhar Mahavidyalaya

B.Sc Hon. (CBCS)

Mathematics: Semester-I
Paper Code: C2T
[Algebra]
Answer all the questions

Unit-1

1) If $x+i y$ moves on the straight line $3 x+4 y+5=0$, then find the minimum value of $|x+i y|$.
2) If $(1+i \tan \alpha)^{1+i \tan \beta}$ can have real value, then show that one of them is $(\sec \alpha)^{\sec } \beta$.
3) If the complex numbers z_{1}, z_{2} and z_{3} represent the three points P, Q, R and be such that $l z_{1}+m z_{2}+n z_{3}=0 \quad$ where $+m+n=0$, then show that the points P, Q, R lie on a straight line.
4) Apply Descartes' rule if signs to ascertain the minimum of complex roots of the equation $x^{6}+3 x^{2}-2 x-3=0$.
5) Find the sum of $99^{\text {th }}$ powers of the roots of the equation $x^{7}-1=0$.
6) z is a variable complex number such that $|z|=2$. Show that the point $z+\frac{1}{z}$ lies on an ellipse.
7) If $=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$, where θ is real, prove that $\theta=i l \log \tan \left(\frac{\pi}{4}+i \frac{x}{2}\right)$.
8) Show that the condition that the sum of two roots of the equation $x^{4}+m x^{2}+m x+p=0$ be equal to the product of the other two roots is $(2 p-n)^{2}=(p-n)(p+m-n)^{2}$.
9) If $a_{1}, a_{2}, \ldots, a_{n}$ be n real positive quantities then prove that $A . M . \geq G . M . \geq H . M$.
10) Solve the equation $x^{3}-3 x^{2}-33 x+847=0$ by Cardan's method.
11) State and prove Cauchy Schwarz's inequality.
12) Show that the equation
$(x-a)^{3}+(x-b)^{3}+(x-c)^{3}+(x-d)^{3}=0$
Where a, b, c, d are not all equal, has only one real root.
13) If $s_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ prove that
(i) $s_{n}>\frac{2 n}{n+1}$, if $n>2$.
(ii) $\left(\frac{n-s_{n}}{n-1}\right)^{n-1}>\frac{1}{n}$, if $n>2$.
14) If $x+\frac{1}{x}=2 \cos \alpha, \quad y+\frac{1}{y}=2 \cos \beta, z+\frac{1}{z}=2 \cos y$, and $x+y+z=0$ then prove that

$$
\sum \sin 4 \alpha=2 \sum \sin (\beta+\gamma)
$$

And $\sum \cos 4 \alpha=2 \sum \cos (\beta+\gamma)$.
15) If a, b, c, x, y, z be all real numbers and $a^{2}+b^{2}+c^{2}=1, x^{2}+y^{2}+z^{2}=1$ then prove that $-1 \leq a x+b y+c z \leq 1$.
If $a_{1}, a_{2}, \ldots a_{n}$ be n positive rational numbers and $s=a_{1}+a_{2}+\cdots+a_{m}$ prove that $\left(\frac{s}{a_{1}}-1\right)^{a_{1}}\left(\frac{s}{a_{2}}-1\right)^{a_{2}} \ldots\left(\frac{s}{a_{n}}-1\right)^{a_{n}} \leq(n-1)^{s}$.
16) Show that the solution of the equation $(1+x)^{n}-(1-x)^{n}=0$ are $x=i \tan \frac{\pi r}{n}$,

Where $r=0,1,2, \ldots, n-1$, if n be odd

$$
=0,1,2, \ldots, \frac{n}{2}-1, \frac{n}{2}+1, \ldots, n-1 \text {, if } n \text { be even. }
$$

17) Solve the equation $x^{4}-12 x^{3}+47 x^{2}-72 x+36=0$

Given that the product of two of the roots is equal to the product of the other two.
18) Prove that the minimum value of $x^{2}+y^{2}+z^{2}$ is $\left(\frac{e}{7}\right)^{2}$ where x, y, z are positive real numbers subject to the condition $2 x+3 y+6 z=c, c$ being a constant. Find the values of x, y, z for which the minimum value is attained.
19) Solve the equation $3 x^{3}-26 x^{2}+52 x-24=0$ given that the roots are in geometric progression.
20) If the equation $x^{3}+p x^{2}+q x+r=0$ has a root $\alpha+i \alpha$ where p, q, r and α are real, prove that $\left(p^{2}-2 q\right)\left(q^{2}-2 p r\right)=r^{2}$
Hence solve the equation $x^{3}-x^{2}-4 x+24=0$.
21) State Descartes' rule of signs, Obtain the equation whose roots exceed the roots of the equation $x^{4}+3 x^{2}+8 x+3=0$ by 1 .
Use Descartes' rule of signs to both the equations to find the exact number of real and complex roots of the given equation.
22) If α, β, γ be the roots of the equation $x^{3}+p x^{2}+q x+r=0$, then form the equation whose roots are $\alpha+\frac{1}{\alpha}, \beta+\frac{1}{\beta}, \gamma+\frac{1}{\gamma}$.
23) Solve the equation $x^{4}+12 x-5=0$ by Ferrari's method.

Unit-2

24) If $f: A \rightarrow B$ amd $g: B \rightarrow C$ be two mapping such that $g \circ f: A \rightarrow C$ is surjective, then show that g is surjective.
25) Use the $2^{\text {nd }}$ principle of Induction to prove that $(3+\sqrt{7})^{n}+(3-\sqrt{7})^{n}$ is an even integer for all $n \in \mathbb{N}$.
26) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{2}, x \in \mathbb{R}$. and suppose $P=\{x \in \mathbb{R}: 0 \leq x \leq 4\}$. Find $f^{-1}[f(p)]$. Is $f^{-1}[f(p)]$ equal to p.
27) Find $f \circ g$, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=|x|+x, x \in \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x)=|x|-x, x \in \mathbb{R}$.
28) Let $f: A \rightarrow B$ and $P \subseteq A$. Then prove that $P \subseteq f^{-1} f(P)$.
29) Find the integer u and v satisfying $52 u-91 v=78$.
30) Using the principle of induction, prove that $2.7^{n}+3.5^{n}-5$ is divisible by 24 for $n \in \mathbb{N}$.
31) Find the remainder when $1!+2!+3!+\cdots+50!$ is divided by 15 .
32) Prove that intersection of two equivalence relation is also an equivalence relation.
33) Examine if the relation ρ on the set \mathbb{Z} is an equivalence relation or not $\rho=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}:|a-b| \leq 3\}$.
34) Prove that, there exists no integer in between 0 and 1 .
35) Let $P=\{n \in \mathbb{Z}: 0 \leq n \leq 5\}, Q=\{n \in \mathbb{Z}:-5 \leq n \leq o\}$ be two sets. Prove that cardinality of two sets are equal.
36) Find the units digit in 7^{99}.
37) Use division algorithm to prove that the square of an odd integer is of the form $(8 k+1)$, where k is an integer.
38) Define equivalence relation. A relation ρ is defined on $\mathbb{N} \times \mathbb{N}$ by ${ }^{"}(a, b) \rho(c, d)$ if and only if $a d-b c^{\text {¹ }}$ for $(a, b),(c, d) \in \mathbb{N} \times \mathbb{N}$. Show that ρ is an equivalence relation.
39) If X and Y are two non-empty sets and $f: X \rightarrow Y$ be an onto mapping, then for any subsets A and B of Y, prove that $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(b)$.
40) Prove that $1^{n}-3^{n}-6^{n}+8^{n}$ is divisible by $10 \forall n \in \mathbb{N}$.
41) Find integers u and v satisfying $20 u+63 v=1$.
42) State the division algorithm on the set of integers.
43) Find integers s and t such that $\operatorname{gcd}(341,1643)=341 s+1643 t$.
44) Using the theory of congruence for finding the remainder when the sum $1^{5}+2^{5}+3^{5}+\cdots+100^{5}$ is divided by 5 .
45) Find the remainder when 777^{777} is divided by 16 .
46) If k be $a+v e$ integer, show that $\operatorname{gcd}(k a, k b)=k \operatorname{gcd}(a, b)$.
47) Prove that tree is a one-to-one correspondence between the sets $(0,1)$ and $[0,1]$.
48) Use the theory of congruences to prove that $17\left|2^{3 n+1}+3.5^{2 n+1}, \forall n \geq 1\right|$.
49) Let $S=\{x \in \mathbb{R}:-1<x<1\}$ and $f: \mathbb{R} \rightarrow S$ be defined by $f(x)=\frac{x}{1+\| x \mid}, x \in \mathbb{R}$. Show that f is a bijection and find f^{-1}.

Unit-3

50) Solve the system of equations:
$x+2 y-z-3 w=1$
$2 x+4 y+3 z+w=3$
$3 x+6 y+4 z-2 w=5$
If possible.
51) For what values of k the system of equations
$x+2 y+3 z=k x$
$2 x+y+3 z=k y$
$2 x+3 y+z=k z$
Has a non trivial solution.
52) Obtain the fully row reduced normal form of the matrix: $\left(\begin{array}{ccccc}0 & 0 & 1 & 2 & 1 \\ 1 & 3 & 1 & 0 & 3 \\ 2 & 6 & 4 & 2 & 8 \\ 3 & 9 & 4 & 2 & 10\end{array}\right)$.
53) For what values of k, the planes $\quad x-4 y+5 z=k, \quad x-y+2 z=3,2 x+y+z=0$ intersect in a line.
54) Find a row echelon matrix which is row equivalent to $\left(\begin{array}{lllll}0 & 0 & 2 & 2 & 0 \\ 1 & 3 & 2 & 4 & 1 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6\end{array}\right)$.
55) Show that the planes $2 x-y+z=5, x+2 y+4 z=7,5 x+3 y-z=0$ are concurrent.
56) Let x, y, z be elements of a vector space V over F and. Let $a, b \in F$. Show that x, y, z are linearly dependent, if $(x+a y+b z), y, z$ be linearly dependent.
57) Find the condition on $a, b \in \mathbb{R}$ so that the set $\{(a, b, 1),(b, 1, a),(1, a, b)\}$ is linearly dependent in \mathbb{R}^{3}.
58) Find all real λ for which the rank of matrix A is 2 :
$A=\left(\begin{array}{cccc}1 & 2 & 3 & 1 \\ 2 & 5 & 3 & \lambda \\ 1 & 1 & 6 & \lambda=1\end{array}\right)$.
59) Solve the system of equations
$x_{2}+x_{3}=a$
$x_{1}+x_{3}=b$
$x_{1}+x_{2}=c$ and use the solution to find the inverse of the matrix $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$.
60) Investigate, for what values of α and μ, the following equations
$x+y+z=6$
$x+2 y+3 z=10$
$x+2 y+\lambda z=\mu$
have i) No solution
ii) a unique solution
and iii) an infinite number of solutions.

Unit-4

61) Find the rank of the matrix: $\left(\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right)$ If two straight lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{a} y+c_{2}=0$ are coincident.
62) Show that the rank of a skew symmetric matrix cannot be 1 .
63) Stay Cayley-Hamilton theorem and using theorem find A^{-1}, where $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 5\end{array}\right)$.
64) A and B are any two 2×2 matrix and E is the corresponding unit matrix. Show that $A B-B A=E$ cannot hold under any circumstance.
65) If λ be an eigen value of a non-singular matrix A then prove that λ^{-1} is an eigen value of A^{-1}.
66) A linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}-2 x_{2}+x_{3}, x_{1}-3 x_{2}-2 x_{3}\right) .\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. Find the matrix of T relative to the ordered bases $\{(0,1,1),(1,0,1),(1,1,0)\}$ of \mathbb{R}^{3} and $\{(1,0),(0,1)\}$ of \mathbb{R}^{2}.
67) Define an eigen vector of a matrix $A_{n \times n}$ over filed F. Show that there exist many eigen vectors of A corresponding to an eigen value $\lambda \in F$.
68) Show that the intersection of two subspaces of a vector space over a filed F is a subspace of V.
69) If A be a real skew symmetric matrix of order n, prove that :
(i) The matrix $S-I_{n}$ is non-singular,
(ii)The matrix $\left(S-I_{n}\right)^{-1}\left(S+I_{n}\right)$ is orthogonal,
(iii)If X be an eigen vector of S with eigen value λ, then X is also an eigen vector of $\left(S-I_{n}\right)^{-1}\left(S+I_{n}\right)$ with eigen value $\frac{\lambda+1}{\lambda-1}$.
70) Let $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\}$.

Prove that S is a subspace of \mathbb{R}^{3}. Find a basis of S. Determine the dimension of S.
71) Let $S=\left\{(x, y, z, w) \in \mathbb{R}^{3}: x+2 y-z=0,2 x+y+w=0\right\}$ prove that S is a subspace of the real vector space \mathbb{R}^{4}. Also find the basis of S and the dimension of S.
72) A is a 3×3 real matrix having the eigen values $2,3,1$. If $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ are the eigen vectors of A corresponding to the eigen values $2,3,1$ respectively. Find the matrix A.
73) Let V be a vector space over a field F and let $\alpha, \beta \in u$. Then prove that the set $w=\{c \alpha+d \beta: c \in F, d \in F\}$ form a subspace of V. If $\alpha=(1,2,3), \beta=(3,1,0)$ and $\gamma=(2,1,3)$ then examine for $\gamma \in w$ or not.

